The difference between Alkaline and Lithium Cells

The Alkaline battery gets its name because it has an alkaline electrolyte of potassium hydroxide, instead of the acidic ammonium chloride or zinc chloride electrolyte of zinc-carbon batteries.

This image has an empty alt attribute; its file name is image-2-716x1024.png
This image has an empty alt attribute; its file name is image-1-821x1024.png

Above, you see pictures of two types of cells that Panasonic makes. The ones on the top are AA type Alkaline cells. The ones on the bottom are AA type Zinc Carbon cells.

Alkaline cell
Zinc Carbon Cell

Based on the tables above, the Zinc Carbon cell is lighter, but has a lower shelf life. They both are AA type and have a nominal voltage of 1.5V, but there is one point of comparison that is not listed in the table above. That is Capacity.

The Capacity of a AA cell depends on the load connected to it. For example, if you discharge the AA cell at 1A, it might discharge for say 1 hour. Now what if you discharged it at 0.5A, will it discharge for 2 hours? The answer is no, the effective capacity at 0.5A will be slightly higher, so the cell will be able to supply for a little more than 2 hours.

This is depicted by the table below for an Alkaline cell –

Capacity (%)1009080706050403020100
Zero-load (V)1.61.451.381.341.321.301.281.261.231.201.10
330 mW load (V)1.491.351.271.201.161.121.101.081.040.980.62

Ref: Texas Instruments

If the device you have connected to the cell has a cut-off voltage at 1.1V, at zero load the discharge it will cut-off at 0% capacity, whereas at 330mW load it will cutoff at 40% capacity.

So, capacity varies with discharge current.

This image has an empty alt attribute; its file name is image-5.png
Discharge Characteristics for the Panasonic Zinc Carbon cell

The graph above shows the discharge characteristics for the Panasonic Zinc Carbon cell. With the selected load and discharge curve selected (15s ON, 45s OFF and repeat), the cell was able to run for 70 cycles before reaching the end voltage. If you buy this cell thinking that it will run your device for 70 days, you may be underestimating or overestimating depending on the load your device puts on the cell.

Now that you’ve understood the relationship between Capacity and Discharge Current, lets assume a constant discharge current. Which cell, Alkaline or Zinc Carbon performs better?

Zinc Carbon cells are typically good for use in applications that require low current draw, and they are cheaper than their Alkaline counterparts. So it is more likely for an Alkaline cell to perform better, which means it will be able to deliver higher currents and more discharge cycles.

Let’s now consider Lithium cells. These are typically high energy density rechargeable cells good for use in high drain applications.

Comparison between Alkaline and Lithium Energizer cells

Based on the graph above, it can be seen that for a 1W discharge, which for a 1.5V nominal cell is approximately 600mA of constant discharge current, the Lithium cell lasts for more than 4 hours, whereas the Alkaline cell lasts for 1 hour.

Alkaline vs Lithium cell comparison for Energizer cells

Considering the overall picture, based on the table above it can be seen that Lithium performs better than its Alkaline counterpart, but also costs about 50% more. At the time of writing this article, a 4 pack Energizer AA Lithium costs around $8.5 CAD, and a 4 pack Energizer Alkaline costs around $5.2 CAD.

Do Lithium-Ion Batteries show the Memory Effect?

It has long been known that Nickel-Cadmium and older versions of Nickel–Metal Hydride rechargeable cells show the memory effect, but there is uncertainty of its existence in Lithium based cells. Memory Effect or Voltage Depression was first observed in a Nickel-Cadmium battery which was being used in a satellite. Some of these were the Explorer...
Continue Reading

Dry Coated Electrode – Tesla’s Acquisition of Maxwell

If you’ve taken the Battery Masterclass, you know that the electrode material which includes the binder and the active material are mixed into a slurry before they are applied evenly on the current collector to form an electrode.  Courtesy of LG Chem The process of manufacturing electrodes needs energy, water and a lot of floor...
Continue Reading

Discharge Characteristics of Lithium-ion Batteries

Although batteries have chemical energy enclosed in a mechanical housing, we monitor them electrically while they are in use. The discharge characteristics are an important parameter to be monitored while energy is being taken from the battery. Image credit – LG Chem Above is a graph of what discharging profiles for a Lithium-ion cells looks...
Continue Reading
5 Responses
  1. Eric

    But is it true that Lithium-ion batteries need rare earth elements that are quite destructive to the environment due to the extraction process involved for their production?

  2. It is a really good article that explains to difference between alkaline and lithium cell. Well researched and understood the content.

Leave a Reply

error: Content is protected